Esqueça a Boston Dynamics.  Este robô aprendeu sozinho a andar
Inteligência artificial

Esqueça a Boston Dynamics.  Este robô aprendeu sozinho a andar

Os vídeos virais da Boston Dynamics são impressionantes, mas ensinar um robô a andar sozinho é muito mais difícil do que parece.

Um par de pernas robóticas chamado Cassie foi  ensinado a andar usando o aprendizado por reforço, a técnica de treinamento que ensina comportamentos complexos de IA por tentativa e erro.  O robô de  duas pernas  aprendeu uma série de movimentos desde o início, incluindo andar agachado e carregar uma carga imprevista.

Mas ele pode dançar?  As expectativas sobre o que os robôs podem fazer aumentam graças aos vídeos virais divulgados pela Boston Dynamics, que exibem seu robô humanoide Atlas de pé em uma perna, pulando sobre caixas e  dançando.  Esses vídeos acumularam milhões de visualizações e até foram  parodiados.  O controle que Atlas tem sobre seus movimentos é impressionante, mas as sequências coreografadas provavelmente envolvem muito ajuste manual.  (Boston Dynamics não publicou detalhes sobre seus inventos, então é difícil dizer quantas adaptações são necessárias.)

“Esses vídeos podem levar algumas pessoas a acreditar que esta é uma questão resolvida e fácil”, diz  Zhongyu  Li, da Universidade da Califórnia, em Berkeley, que trabalhou em Cassie com seus colegas.  “Mas ainda temos um longo caminho a percorrer para que robôs humanoides operem e vivam em ambientes humanos de forma confiável”.  Cassie ainda não sabe dançar, mas ensinar o robô de tamanho humano a andar sozinho o coloca vários passos mais perto de ser capaz de lidar com uma ampla variedade de terrenos e se recuperar quando tropeçar ou se danificar.

Limitações virtuais: o aprendizado por reforço tem sido usado para treinar muitos bots a andar em simulações virtuais, mas transferir essa habilidade para o mundo real é difícil.  “Muitos dos vídeos que você vê de agentes virtuais não são nada realistas”, diz Chelsea Finn, pesquisadora de IA e robótica da Universidade de Stanford, que não esteve envolvida no trabalho com Cassie.  Pequenas diferenças entre as leis físicas simuladas dentro de um ambiente virtual e fora dele — como a forma como o atrito funciona entre os pés de um robô e o solo — podem levar a grandes fracassos quando um robô tenta aplicar o que aprendeu. Um robô pesado de duas pernas pode perder o equilíbrio e cair se seus movimentos forem um pouco deslocados.

Simulação dupla:  mas treinar um grande robô por tentativa e erro no mundo real seria perigoso.  Para contornar esses problemas, a equipe de Berkeley usou dois níveis de ambiente virtual.  No primeiro, uma versão simulada de Cassie aprendeu a andar com base em um grande banco de dados existente de movimentos robóticos. Essa simulação foi então  transferida para um segundo ambiente virtual chamado  Sim Mechanics  que espelha a física do mundo real com um elevado grau de precisão — mas a um custo alto em velocidade de execução.  Apenas quando Cassie pareceu executar bem os movimentos de locomoção no meio digital, o modelo de caminhada erudito foi carregado no robô real.

O verdadeiro Cassie era capaz de andar usando o modelo aprendido na simulação sem nenhum ajuste adicional extra.  Ele pode andar em terrenos acidentados e escorregadios, carregar cargas inesperadas e se recuperar de ser empurrado.  Durante o teste, Cassie também danificou dois motores em sua perna direita, mas foi capaz de ajustar seus movimentos para compensar.  Finn acha que este é um trabalho estimulante.  Edward Johns, que lidera o Robot Learning Lab no Imperial College London, concorda. “Este é um dos exemplos de maior sucesso que já vi”, diz ele.

A equipe de Berkeley espera usar sua abordagem para aumentar o repertório de movimentos de Cassie.  Mas  não  espere  um baile de dança tão cedo.

Nossos tópicos